EconPapers    
Economics at your fingertips  
 

SIR epidemic model of childhood diseases through fractional operators with Mittag-Leffler and exponential kernels

Rajarama Mohan Jena, Snehashish Chakraverty and Dumitru Baleanu

Mathematics and Computers in Simulation (MATCOM), 2021, vol. 182, issue C, 514-534

Abstract: Vaccination programs for infants have significantly affected childhood morbidity and mortality. The primary goal of health administrators is to protect children against diseases that can be prevented by vaccination. In this manuscript, we have applied the homotopy perturbation Elzaki transform method to obtain the solutions of the epidemic model of childhood diseases involving time-fractional order Atangana–Baleanu and Caputo–Fabrizio derivatives. The present method is the combination of the classical homotopy perturbation method and the Elzaki transform. Although Elzaki transform is an effective method for solving fractional differential equations, this method sometimes fails to handle nonlinear terms from the fractional differential equations. These difficulties may be overcome by coupling this transform with that of HPM. This method offers a rapidly convergent series solutions. Validation and usefulness of the technique are incorporated with new fractional-order derivatives with exponential decay law and with general Mittag-Leffler law. Obtained results are compared with the established solution defined in the Caputo sense. Further, a comparative study among Caputo, Atangana–Baleanu, and Caputo–Fabrizio derivatives is discussed.

Keywords: SIR epidemic model; Atangana–Baleanu operator; Caputo–Fabrizio operator; Fractional calculus; Transform method; Perturbation method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420304110
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:182:y:2021:i:c:p:514-534

DOI: 10.1016/j.matcom.2020.11.017

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:514-534