Influence of the load angle on magnetic radial forces and torque ripple of a low power permanent magnet synchronous machine
Emre Uygun,
Michel Hecquet,
Abdelmounaïm Tounzi,
Daniel Depernet,
Vincent Lanfranchi,
Serge Bruno and
Thierry Tollance
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 184, issue C, 153-164
Abstract:
This paper shows the influence of the shift phase angle ψ between phase currents and back-electromotive forces on magnetic radial forces and torque ripple for a specific low power permanent magnet synchronous machine. This influence is firstly demonstrated through analytical development considering only the first harmonic values. Then, magnetic pressure harmonics versus space and frequency as well as torque ripple are evaluated on the studied motor for different angles using finite element approach. The aim is to establish a good compromise between consumed current, torque and radial force harmonics at the origin of the electromagnetic noise. Experimental measurements with a sensorless field-oriented control are detailed.
Keywords: Radial magnetic force; Torque ripple; Control; Load angle; Permanent magnet machine (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420301798
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:184:y:2021:i:c:p:153-164
DOI: 10.1016/j.matcom.2020.05.020
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().