EconPapers    
Economics at your fingertips  
 

On solving elliptic boundary value problems using a meshless method with radial polynomials

Cheng-Yu Ku, Jing-En Xiao, Chih-Yu Liu and Der-Guey Lin

Mathematics and Computers in Simulation (MATCOM), 2021, vol. 185, issue C, 153-173

Abstract: This paper presents the meshless method using radial polynomials with the combination of the multiple source collocation scheme for solving elliptic boundary value problems. In the proposed method, the basis function is based on the radial polynomials, which is different from the conventional radial basis functions that approximate the solution using the specific function such as the multiquadric function with the shape parameter for infinitely differentiable. The radial polynomial basis function is a non-singular series function in nature which is infinitely smooth and differentiable in nature without using the shape parameter. With the combination of the multiple source collocation scheme, the center point is regarded as the source point for the interpolation of the radial polynomials. Numerical solutions in multiple dimensions are approximated by applying the radial polynomials with given terms of the radial polynomials. The comparison of the proposed method with the radial basis function collocation method (RBFCM) using the multiquadric and polyharmonic spline functions is conducted. Results demonstrate that the accuracy obtained from the proposed method is better than that of the conventional RBFCM with the same number of collocation points. In addition, highly accurate solutions with the increase of radial polynomial terms may be obtained.

Keywords: Radial basis function; Radial polynomials; Multiquadric; The shape parameter; Collocation method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420304675
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:185:y:2021:i:c:p:153-173

DOI: 10.1016/j.matcom.2020.12.012

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:153-173