Optimal vaccine for human papillomavirus and age-difference between partners
Kalyanasundaram Madhu and
Al-arydah, Mo’tassem
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 185, issue C, 325-346
Abstract:
We introduce a two sex age-structured mathematical model to describe the dynamics of HPV disease with childhood and catch up vaccines. We find the basic reproduction number (R0) for the model and show that the disease free equilibrium is locally asymptotically stable when R0≤1. We introduce an optimal control problem and prove that optimal vaccine solution exists and is unique. Using numerical simulation, we show that 77% childhood vaccination controls HPV disease in a 20 years period, but 77% catch up vaccine does not. In fact, catch up vaccine has a slight effect on HPV disease when applied alone or with childhood vaccine. We estimate the optimal vaccine needed to control HPV in a 25 year period. We show that reducing the partners between youths and adults is an effective way in reducing the number of HPV cases, the vaccine needed and the cost of HPV. In sum, we show that choosing partners within the same age group is more effective in controlling HPV disease than providing adult catch up vaccination.
Keywords: Human papillomavirus; Age-structured mathematical model; Optimal control problem; Optimal vaccine; Age-difference between partners (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421000033
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:185:y:2021:i:c:p:325-346
DOI: 10.1016/j.matcom.2021.01.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().