EconPapers    
Economics at your fingertips  
 

Evaluating Machine Learning methods for estimation in online surveys with superpopulation modeling

Ramón Ferri-García, Luis Castro-Martín and María del Mar Rueda

Mathematics and Computers in Simulation (MATCOM), 2021, vol. 186, issue C, 19-28

Abstract: Online surveys, despite their cost and effort advantages, are particularly prone to selection bias due to the differences between target population and potentially covered population (online population). This leads to the unreliability of estimates coming from online samples unless further adjustments are applied. Some techniques have arisen in the last years regarding this issue, among which superpopulation modeling can be useful in Big Data context where censuses are accessible. This technique uses the sample to train a model capturing the behavior of a target variable which is to be estimated, and applies it to the nonsampled individuals to obtain population-level estimates. The modeling step has been usually done with linear regression or LASSO models, but machine learning (ML) algorithms have been pointed out as promising alternatives. In this study we examine the use of these algorithms in the online survey context, in order to evaluate and compare their performance and adequacy to the problem. A simulation study shows that ML algorithms can effectively volunteering bias to a greater extent than traditional methods in several scenarios.

Keywords: Superpopulation modeling; Machine learning; Online surveys and simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475420300793
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:186:y:2021:i:c:p:19-28

DOI: 10.1016/j.matcom.2020.03.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:186:y:2021:i:c:p:19-28