Mathematical analysis and simulation of fixed point formulation of Cauchy problem in linear elasticity
Abdellatif Ellabib,
Abdeljalil Nachaoui and
Abdessamad Ousaadane
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 187, issue C, 231-247
Abstract:
In this work, an inverse problem in linear elasticity is considered, it is about reconstructing the unknown boundary conditions on a part of the boundary based on the other boundaries. A methodology based on the domain decomposition operating mode is opted by constructing a Steklov–Poincaré kind’s operator. This allows us to reformulate our inverse problem into a fixed point one involving a Steklov kind’s operator, the existence of the fixed point problem is shown using the topological degree of Leray–Schauder. The proposed approach offers the opportunity to exploit domain decomposition methods for solving this inverse problem. Finally, a numerical study of this problem using the boundary element method is presented. The obtained numerical results show the efficiency of the proposed approach.
Keywords: Cauchy inverse problem; Elasticity equation; Steklov–Poincaré operator; Fixed point theory; Degree of Leray–Schauder; Boundary elements method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421000598
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:187:y:2021:i:c:p:231-247
DOI: 10.1016/j.matcom.2021.02.020
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().