Three novel fifth-order iterative schemes for solving nonlinear equations
Chein-Shan Liu,
Essam R. El-Zahar and
Chih-Wen Chang
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 187, issue C, 282-293
Abstract:
Kung and Traub’s conjecture indicates that a multipoint iterative scheme without memory and based on m evaluations of functions has an optimal convergence order p=2m−1. Consequently, a fifth-order iterative scheme requires at least four evaluations of functions. Herein, we derive three novel iterative schemes that have fifth-order convergence and involve four evaluations of functions, such that the efficiency index is E.I.=1.49535. On the basis of the analysis of error equations, we obtain our first iterative scheme from the constant weight combinations of three first- and second-class fourth-order iterative schemes. For the second iterative scheme, we devise a new weight function to derive another fifth-order iterative scheme. Finally, we derive our third iterative scheme from a combination of two second-class fourth-order iterative schemes. For testing the practical application of our schemes, we apply them to solve the van der Waals equation of state.
Keywords: Nonlinear equations; Constantly weighting technique; Fifth-order iterative schemes; Error equations; Weight function (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421000665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:187:y:2021:i:c:p:282-293
DOI: 10.1016/j.matcom.2021.03.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().