Transmission dynamics, global stability and control strategies of a modified SIS epidemic model on complex networks with an infective medium
Yingkang Xie and
Zhen Wang
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 188, issue C, 23-34
Abstract:
In this paper, a new SIS (susceptible–infected–susceptible) epidemic model on complex networks with an infective medium is proposed. The infection rate is modified by applying the theory of probability. By using mean-field approximation, iterative analysis method and mathematical analysis, the epidemic threshold, stabilities of the disease-free equilibrium and the endemic equilibrium are studied. Moreover, some disease control strategies are proposed. The results show that the epidemic threshold plays an important role in the spread of disease. Finally, the theoretical results are confirmed by some simple numerical examples.
Keywords: Heterogeneous network, Globally asymptotically stable, Epidemic threshold, Infective medium (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542100104X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:188:y:2021:i:c:p:23-34
DOI: 10.1016/j.matcom.2021.03.029
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().