Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells
Muhammad Umar,
Zulqurnain Sabir,
Muhammad Asif Zahoor Raja,
J.F. Gómez Aguilar,
Fazli Amin and
Muhammad Shoaib
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 188, issue C, 241-253
Abstract:
In the investigations presented here, an efficient computing approach is applied to solve Human Immunodeficiency Virus (HIV) infection spread. This approach involves CD4+ T-cells by feed-forward artificial neural networks (FF-ANNs) trained with particle swarm optimization (PSO) and interior point method (IPM), i.e., FF-ANN-PSO-IPM. In the proposed solver FF-ANN-PSO-IPM, the FF-ANN models of differential equations are used to develop the fitness functions for an infection model of T-cells. The training of networks through minimization problem are proficiently conducted by integrated heuristic capability of PSO-IPM. The reliability, stability and exactness of the proposed FF-ANN-PSO-IPM are established through comparison with outcomes of standard numerical procedure with Adams method for both single and multiple autonomous trials with precision of order 4 to 8 decimal places of accuracy. The statistical measures are effectively used to validate the outcomes of the proposed FF-ANN-PSO-IPM.
Keywords: HIV infection model; Particle swarm optimization; Artificial neural networks; Interior-point method; Statistical analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:188:y:2021:i:c:p:241-253
DOI: 10.1016/j.matcom.2021.04.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().