Structure preserving schemes for Fokker–Planck equations with nonconstant diffusion matrices
Nadia Loy and
Mattia Zanella
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 188, issue C, 342-362
Abstract:
In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker–Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the proposed schemes preserve fundamental structural properties like nonnegativity of the solution without restriction on the size of the mesh and entropy dissipation. Moreover, all the methods presented here are at least second order accurate in the transient regimes and arbitrarily high order for large times in the hypothesis in which the flux vanishes at the stationary state. Suitable numerical tests will confirm the theoretical results.
Keywords: Fokker–Planck equations; Positivity preserving; Structure preserving methods; Finite difference schemes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:188:y:2021:i:c:p:342-362
DOI: 10.1016/j.matcom.2021.04.018
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().