Robust numerical method for singularly perturbed semilinear parabolic differential difference equations
Masho Jima Kabeto and
Gemechis File Duressa
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 188, issue C, 537-547
Abstract:
This paper deals with the robust numerical method for solving the singularly perturbed semilinear partial differential equation with the spatial delay. The quadratically convergent quasilinearization technique is used to linearize the semilinear term. It is formulated by discretization of the solution domain and then replacing the differential equation by finite difference approximation that in turn gives the system of algebraic equations. The method is shown to be first-order convergent. It is observed that the convergence is independent of the perturbation parameter. Numerical illustrations are investigated on model examples to support the theoretical results and the effectiveness of the method.
Keywords: Singularly perturbed parabolic equations; Semilinear; Fitted mesh method; Accurate solution (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001762
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:188:y:2021:i:c:p:537-547
DOI: 10.1016/j.matcom.2021.05.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().