Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: The case of Caputo-Fabrizio time fractional derivative
S. Kumar,
Subir Das and
S.H. Ong
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 1-14
Abstract:
In this work, a study of the mathematical model of uncontrolled growth of tumor cells in the presence of chemotherapy is proposed. The fractional form of the model with the non-singular exponential kernel is considered. This model consists of four coupled partial differential equations (PDEs) which depict the relationship among the normal, tumor, immune cells, and the chemotherapy parameter. The purpose is to investigate the behavior of all types of cells with a change in the fractional order parameter and to show the effect of chemotherapeutic treatment on tumor cells with different levels of immune system. Before applying the proposed numerical method, an approximate expression for the fractional-order Caputo-Fabrizio (C-F) derivative of polynomial function xk is derived. A shifted Chebyshev operational matrix of fractional order derivative is deduced by using an approximation of the C-F fractional derivative of the function and some properties of the orthogonal polynomials. The system of four coupled fractional order PDEs is studied by using the operational matrix method. The dynamics of all the aforementioned cells with respect to different fractional order derivatives are derived and computed numerically for the prescribed values of parameters. These are depicted through graphs to study the diffusive nature of cells and the effect of chemotherapy on all types of cells, before and after applying the therapy. This study shows that tumor cell growth decreases with time when chemotherapy treatment is started. The concentration of tumor cells is more in the invasive fronts of the tumor site as compared to the center of the tumor. It is concluded that the growth of tumor cells is less due to chemotherapy treatment for a person with a strong immune system.
Keywords: Fractional partial differential system; Diffusion equation; Chebyshev polynomial; Caputo-Fabrizio derivative; Tumor cells; Chemotherapeutic treatment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:1-14
DOI: 10.1016/j.matcom.2021.05.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().