Mittag-Leffler stabilization of fractional infinite dimensional systems with finite dimensional boundary controller
Rui-Yang Cai,
Hua-Cheng Zhou and
Chun-Hai Kou
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 1176-1185
Abstract:
This paper studies the Mittag-Leffler stabilization for unstable infinite dimensional systems actuated by boundary controllers described by time fractional reaction diffusion equations. Via the Riesz basis method, the stable and the unstable part of the considered system are separated. The Kalman rank criterion, which is a classical linear algebra condition, guarantees the stabilizability of the unstable subsystem. Based on these, a controller governed by a finite dimensional system (so called the finite dimensional controller hereafter) is designed to achieve the Mittag-Leffler stability of the closed loop. From infinite to finite, this methodology is a substantial improvement for the existing control laws.
Keywords: Mittag-Leffler stability; Finite dimensional controller; Riesz basis; Kalman rank criterion (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421002639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:1176-1185
DOI: 10.1016/j.matcom.2021.07.013
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().