Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions
Olha Ivanyshyn Yaman and
Gazi Özdemir
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 181-191
Abstract:
We propose numerical schemes for solving the boundary value problem for the modified Helmholtz equation and generalized impedance boundary condition. The approaches are based on the reduction of the problem to the boundary integral equation with a hyper-singular kernel. In the first scheme the hyper-singular integral operator is treated by splitting off the singularity technique whereas in the second scheme the idea of numerical differentiation is employed. The solvability of the boundary integral equation and convergence of the first method are established. Exponential convergence for analytic data is exhibited by numerical examples.
Keywords: Generalized impedance boundary condition; Modified Helmholtz equation; Boundary integral equations; Hyper-singular kernels (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001853
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:181-191
DOI: 10.1016/j.matcom.2021.05.013
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().