Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market
Ting Jin and
Xiangfeng Yang
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 203-221
Abstract:
Uncertain fractional differential equations (UFDEs) have non-locality features to reflect memory and hereditary characteristics for the asset price changes, thus are more suitable to model the real financial market. Based on this characteristic, this paper primarily investigates the monotonicity theorem for uncertain fractional differential equations in Caputo sense and its application. Firstly, monotonicity theorems for solutions of UFDEs are presented by using the α-path method. Secondly, as the application of the monotone function theorem, a novel uncertain fractional mean-reverting model with a floating interest rate is presented. Lastly, the pricing formulas of the European and American options are derived for the proposed model based on the monotone function and present extreme values and time integral theorems, respectively. In addition, numerical schemes are designed, and numerical calculations are illustrated concerning different parameters through the predictor–corrector method.
Keywords: Fractional differential equation; Uncertainty distribution; Predictor–corrector method; Option price; α-path (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421001890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:203-221
DOI: 10.1016/j.matcom.2021.05.018
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().