Finite differences for higher order derivatives of low resolution data
Subramaniam Balakrishna and
William W. Schultz
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 714-722
Abstract:
The viability of finite difference stencils for higher-order derivatives of low-resolution data, encountered in various applications, is examined. This study’s illustrative example involves the evaluation of the fourth derivative of the digitized free surface radius obtained from pixelated images. Procedures to obtain an optimal approximation to the derivative are made from estimates of truncation and roundoff error, with emphasis on the analysis of roundoff error. A method of successive approximations to evaluate the optimal grid spacing is presented. Higher-order stencils allow for larger optimal grid spacing, thereby reducing the roundoff error that would otherwise dominate. Hence, higher-order stencils are effective for low precision data.
Keywords: Finite difference methods; Low resolution data; Higher order derivatives (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421002342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:714-722
DOI: 10.1016/j.matcom.2021.06.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().