A hybrid augmented compact finite volume method for the Thomas–Fermi equation
Tengjin Zhao,
Zhiyue Zhang and
Tongke Wang
Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 760-773
Abstract:
A new efficient method that combines the Puiseux series asymptotic technique with an augmented compact finite volume method is proposed to develop a numerical approximate solution for the Thomas–Fermi equation on semi-infinity domain. By using the asymptotic series of solution at infinity and the Puiseux series expansion at origin to characterize the singularities, the natural and precise boundary conditions are obtained. The expansions contain undetermined parameters which associate with the singularity as the augmented variables. A regular boundary value problem is derived, for which an augmented compact finite volume method is used. The computational results show that the method not only obtains the high precise numerical solution, but also obtains the high precise initial slope. In particular, we find that the initial slope is exactly equal to the augmented variable related to the singularities in the Puiseux series. The initial slope not only has an important physical significance, but also its calculation accuracy has become an important criteria to measure the quality of the algorithm.
Keywords: Thomas–Fermi equation; Puiseux series; Compact finite volume method; Augmented variable (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421002330
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:760-773
DOI: 10.1016/j.matcom.2021.06.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().