EconPapers    
Economics at your fingertips  
 

A hybrid augmented compact finite volume method for the Thomas–Fermi equation

Tengjin Zhao, Zhiyue Zhang and Tongke Wang

Mathematics and Computers in Simulation (MATCOM), 2021, vol. 190, issue C, 760-773

Abstract: A new efficient method that combines the Puiseux series asymptotic technique with an augmented compact finite volume method is proposed to develop a numerical approximate solution for the Thomas–Fermi equation on semi-infinity domain. By using the asymptotic series of solution at infinity and the Puiseux series expansion at origin to characterize the singularities, the natural and precise boundary conditions are obtained. The expansions contain undetermined parameters which associate with the singularity as the augmented variables. A regular boundary value problem is derived, for which an augmented compact finite volume method is used. The computational results show that the method not only obtains the high precise numerical solution, but also obtains the high precise initial slope. In particular, we find that the initial slope is exactly equal to the augmented variable related to the singularities in the Puiseux series. The initial slope not only has an important physical significance, but also its calculation accuracy has become an important criteria to measure the quality of the algorithm.

Keywords: Thomas–Fermi equation; Puiseux series; Compact finite volume method; Augmented variable (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421002330
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:190:y:2021:i:c:p:760-773

DOI: 10.1016/j.matcom.2021.06.010

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:760-773