Finite-time impulsive observers for nonlinear systems represented by Takagi–Sugeno models: Application to a chaotic system
Zedjiga Yacine,
Hamid Hamiche,
Saïd Djennoune and
Saïd Mammar
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 192, issue C, 321-352
Abstract:
In this paper, observer design for nonlinear systems represented by Takagi Sugeno models (T-S) is investigated. The first main contribution concerns the finite time convergence of the estimations, ensured by an impulsive observer with state updates. The second contribution, lies with taking into account unmeasurable parameters, using the Differential Mean Value Theorem (DMVT) to express the disturbed error dynamics into a Linear Parameter Varying system. The stability conditions are formulated in terms of Linear Matrix Inequalities (LMI). To prove the efficiency of the proposed procedure, applications are performed on a chaotic system. The obtained results are pretty satisfying.
Keywords: Observer design; Lyapunov functions; Takagui Sugeno systems; Chaotic systems; Finite time convergence; LMI; Nonlinear systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003232
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:192:y:2022:i:c:p:321-352
DOI: 10.1016/j.matcom.2021.09.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().