EconPapers    
Economics at your fingertips  
 

Chebyshev spectral method for solving fuzzy fractional Fredholm–Volterra integro-differential equation

Sachin Kumar, Juan J. Nieto and Bashir Ahmad

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 192, issue C, 501-513

Abstract: The fuzzy integral equation is used to model many physical phenomena which arise in many fields like chemistry, physics, and biology, etc. In this article, we emphasize on mathematical modeling of the fuzzy fractional Fredholm–Volterra integral equation. The numerical solution of the fuzzy fractional Fredholm–Volterra equation is determined in which model contains fuzzy coefficients and fuzzy initial condition. First, an operational matrix of Chebyshev polynomial of Caputo type fractional fuzzy derivative is derived in fuzzy environment. The integral term is approximated by the Chebyshev spectral method and the differential term is approximated by the operational matrix. This method converted the given fuzzy fractional integral equation into algebraic equations which are fuzzy in nature. The desired numerical solution is to find out by solving these algebraic equations. The different particular cases of our model have been solved which depict the feasibility of our method. The error tables show the accuracy of the method. We also can see the accuracy of our method by 3D figures of exact and obtained numerical solutions. Hence, our method is suitable to deal with the fuzzy fractional Fredholm–Volterra equation.

Keywords: Fuzzy calculus; Chebyshev polynomial; Operational matrix; Mathematical modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003463
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:192:y:2022:i:c:p:501-513

DOI: 10.1016/j.matcom.2021.09.017

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:192:y:2022:i:c:p:501-513