EconPapers    
Economics at your fingertips  
 

Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of Non-Newtonian Williamson fluid

Umair Khan, A. Zaib, A. Ishak, Sakhinah Abu Bakar, I.L. Animasaun and Se-Jin Yook

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 193, issue C, 250-268

Abstract: The motion of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant is explored in this report with the aim to announce the increasing effects of Williamson fluid parameter, volume fraction, radius of curvature, thermal radiation, and Lorentz force on such a transport phenomenon. This report was designed to explore the upper and lower solutions of the model suitable to study the enhancement of the aforementioned variables. The similarity solution of the dimensional governing equation was sought using the appropriate similarity variables. These dimensionless forms of ODEs are numerically solved using the 3-stage Lobatto formula, also known as bvp4c. The validation of the numerical scheme was considered. The drag force decelerates and then upsurges owing to the volume fraction of nanoparticles in the corresponding UBS and reduces in LBS, while the rate of heat transfer drastically decreases. The temperature and velocity gradient escalate and decelerate, respectively for both branches of results owing to the effect of higher curvature parameter. The temperature distribution decelerates in both outcomes due to the strength of mass suction while the velocity is​ weakened in the lower branch solution (LBS) and augments in the upper branch solution (UBS).

Keywords: Blood-gold nanofluid; Dynamics on a curved surface; Suction and thermal radiation; Lorentz force; Non-Newtonian Williamson fluid (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:193:y:2022:i:c:p:250-268

DOI: 10.1016/j.matcom.2021.10.014

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:250-268