Two-point generalized Hermite interpolation: Double-weight function and functional recursion methods for solving nonlinear equations
Dongjie Liu and
Chein-Shan Liu
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 193, issue C, 317-330
Abstract:
Based on the two-point Hermite interpolation technique, the paper proposes a two-point generalized Hermite interpolation and its inversion in terms of weight functions. We prove that upon combining fourth-order optimal iterative scheme to the double Newton’s method (DNM), we can yield a generalized Hermite interpolation formula to relate the first-order derivatives at two points, and the converse is also true. Resorted on the DNM and the derived formula for the generalized inverse Hermite interpolation, some new third-order iterative schemes of quadrature type are constructed. Then, the fourth-order optimal iterative schemes are devised by using a double-weight function. A functional recursion formula is developed which can generate a sequence of two-point generalized Hermite interpolations for any two given weight functions with certain constraints; hence, a more general class of fourth-order optimal iterative schemes is developed from the functional recursion formula. The constructions of fourth-order optimal iterative schemes by using the techniques of double-weight function and the recursion formula obtained from a single weight function are appeared in the literature at the first time. The novelties involve deriving a two-point generalized Hermite interpolation and its inversion in terms of weight functions subjected to two conditions and through the recursion formula, relating the DNM to the third-order iterative schemes by the inverse Hermite interpolation, formulating a functional recursion formula, deriving a broad class fourth-order optimal iterative schemes through double-weight functions rather than the previous technique with a single-weight function, and finding that the new double-weight function and the newly developed fourth-order optimal iterative schemes are inclusive being convergent faster and competitive to other iterative schemes.
Keywords: Two-point generalized Hermite interpolation; Double-weight function; Functional recursion method; Fourth-order optimal iterative scheme; Nonlinear equation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003839
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:193:y:2022:i:c:p:317-330
DOI: 10.1016/j.matcom.2021.10.019
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().