S-asymptotically periodic fractional functional differential equations with off-diagonal matrix Mittag-Leffler function kernels
Tianwei Zhang and
Yongkun Li
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 193, issue C, 331-347
Abstract:
By employing off-diagonal matrix Mittag-Leffler functions and stability theory for line fractional functional differential equations, a new technique is proposed to investigate the existence, uniqueness and global asymptotical stability of S-asymptotically periodic solution for a class of semilinear Caputo fractional functional differential equations. Some better results are derived, which improve and extend the existing research findings in recent years. As an application of the general theory, some decision theorems are established for the asymptotically dynamical behaviors for fractional four-neuron BAM neural networks. The methods used in this paper could be applied to the study of other fractional differential systems in the areas of science and engineering.
Keywords: Caputo fractional derivative; Matrix Mittag-Leffler function; Laplace transform; Asymptotical stability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003578
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:193:y:2022:i:c:p:331-347
DOI: 10.1016/j.matcom.2021.10.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().