EconPapers    
Economics at your fingertips  
 

A Susceptible–Infectious (SI) model with two infective stages and an endemic equilibrium

Semra Ahmetolan, Ayse Humeyra Bilge, Ali Demirci and Ayse Peker Dobie

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 194, issue C, 19-35

Abstract: The focus of this article is on the dynamics of a susceptible–infected model which consists of a susceptible group (S) and two different infectious groups (I1 and I2). Once infected, an individual becomes a member of one of these infectious groups which have different clinical forms of infection. In addition, during the progress of the illness, an infected individual in group I1 may pass to the infectious group I2 which has a higher mortality rate. The infection is deadly and it has no cure. In this study, positiveness of the solutions for the model is proved. Stability analysis of species extinction, I1-free equilibrium and endemic equilibrium as well as disease-free equilibrium is studied, and it is shown that the disease-free equilibrium is stable whereas all other equilibrium points are asymptotically stable for parameter ranges determined by certain inequalities. In addition, relations between the basic reproduction number of the disease and the basic reproduction number of each infectious stage are examined. Furthermore, the case where all newborns from infected mothers are also infected is analysed. For this type of vertical transmission, endemic equilibrium is asymptotically stable for certain parameter ranges. Finally, a special case which refers to the disease without vital dynamics is investigated and its exact solution is obtained.

Keywords: Epidemic models; Endemic equilibrium; Extinction; Reproduction number; Infectious Diseases; Stability (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421003992
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:194:y:2022:i:c:p:19-35

DOI: 10.1016/j.matcom.2021.11.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:19-35