Chaos, Hopf bifurcation and control of a fractional-order delay financial system
Jianping Shi,
Ke He and
Hui Fang
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 194, issue C, 348-364
Abstract:
The evolution of financial system depends not only on the current state, but also on the previous state. Due to “long-term memory” and “non-locality” of the fractional derivative, fractional-order model can effectively characterize the dynamic features of financial process. An incommensurate fractional-order delay financial system (FDFS) is considered in this paper. Based on linearization and Laplace transformation, the characteristic equation of linearized system of FDFS is obtained. The critical value of the time delay for the occurrence of Hopf bifurcation is determined through the discussions of the eigenvalues of the characteristic equation and the transversality condition. A periodic pulse delay feedback controller is added to the FDFS to control the Hopf bifurcation and to regulate the stability domain of the system. Two illustrative examples are provided to validate our theoretical results. Moreover, numerical simulations demonstrate that the increase of the fractional-order can induce chaos in FDFS, which is detected by 0−1 test for chaos. This paper contributes to a better understanding of the dynamic behavior of financial market, forecasting financial risk and implementing effective financial regulation.
Keywords: Chaos; Hopf bifurcation; Fractional-order financial system; Time delay; Periodic pulse delay feedback controller; 0−1 test (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421004432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:194:y:2022:i:c:p:348-364
DOI: 10.1016/j.matcom.2021.12.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().