EconPapers    
Economics at your fingertips  
 

Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and weak kernel

Xiaofeng Zhang and Rong Yuan

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 195, issue C, 56-70

Abstract: Stochastic bifurcation theory plays an important role in stochastic dynamical systems, thus, in this paper, we mainly consider the stochastic bifurcation of a stochastic logistic model with distributed delay in the weak kernel case, where the birth rate of species is disturbed by white noise. In order to study the bifurcation of stochastic logistic system, we use the intrinsic growth rate of species as a bifurcation parameter. Firstly, we study the stochastic D-bifurcation and stochastic P-bifurcation for stochastic logistic model with distributed delay. Furthermore, by deriving the corresponding Fokker–Planck equation, we obtain the exact expression of the joint density function of the stochastic system near the positive equilibrium point. Finally, we give some conclusions.

Keywords: Stochastic logistic model; Distributed delay; Weak kernel; Stochastic bifurcation; Density function (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475421004572
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:195:y:2022:i:c:p:56-70

DOI: 10.1016/j.matcom.2021.12.023

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:195:y:2022:i:c:p:56-70