Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations
Sachin Kumar,
Shubham Kumar Dhiman and
Astha Chauhan
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 196, issue C, 319-335
Abstract:
In this article, a (2+1)-dimensional system of Broer–Kaup–Kupershmidt (BKK) equations, which describes the non-linear, and long gravity waves in a dispersive system, is investigated by applying the method of Lie group of invariance. Applying the Lie group technique, the infinitesimals, vector fields, commutator table, and adjoint table are constructed for the BKK system. Furthermore, a one-dimensional optimal system of subalgebras is determined with the help of the adjoint transformation matrix; thereafter, the BKK system of equations is reduced into many systems of ordinary differential equations (ODEs) with respect to the similarity variables obtained through the symmetry reduction. These systems of ODEs are solved under some parametric constraints to obtain the exact closed form solutions. The obtained results are interpreted physically via graphical representation. Thus, dark–bright solitary waves, multi-peak mixed waves, breather type waves, periodic waves, multi-peakon solitons, and multi-solitons profiles of the obtained solutions are presented to make this research physically significant. A comparison is also presented between the solutions obtained in this article and the solutions reported by Kassem and Rashed in Kassem and Rashed (2019). The solutions obtained in this article are more general, and completely different in view of solutions obtained by Kassem and Rashed. The resulting solutions are found to be useful to understand the dynamics of BKK model and represent the authenticity as well as the effectiveness of the Lie group method. Therefore, the obtained solutions, and their dynamical wave structures are quite significant for understanding the propagation of the long gravity waves in a dispersive system. To obtain the infinitesimal generators and wave profiles of obtained solutions, symbolic computation is performed in the software package MAPLE and MATHEMATICA.
Keywords: Lie group technique; Optimal system; Adjoint table; Symmetry generators; Similarity solutions; Symbolic computation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422000374
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:196:y:2022:i:c:p:319-335
DOI: 10.1016/j.matcom.2022.01.024
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().