Lagrange–Chebyshev Interpolation for image resizing
Donatella Occorsio,
Giuliana Ramella and
Woula Themistoclakis
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 197, issue C, 105-126
Abstract:
Image resizing is a basic tool in image processing, and in literature, we have many methods based on different approaches, which are often specialized in only upscaling or downscaling. In this paper, independently of the (reduced or enlarged) size we aim to get, we approach the problem at a continuous scale where the underlying function representing the image is globally approximated by its Lagrange–Chebyshev I kind interpolation polynomial corresponding to suitable (tensor product) grids of first kind Chebyshev zeros. This is a well-known approximation tool widely used in many applicative fields due to the optimal behavior of the related Lebesgue constants. Here we aim to show how Lagrange–Chebyshev interpolation can be fruitfully applied also for resizing any digital image in both downscaling and upscaling at any desired size. The performance of the proposed method has been tested in terms of the standard SSIM (Structured Similarity Index Measurement) and PSNR (Peak Signal to Noise Ratio) metrics. The results indicate that, in upscaling, it is almost comparable with the classical Bicubic resizing method with slightly better metrics, but in downscaling a much higher performance has been observed in comparison with Bicubic and other recent methods too. Moreover, for all downscaling cases with an odd scale factor, we give a theoretical estimate of the MSE (Mean Squared Error) of the output image produced by our method, stating that it is certainly null (hence PSNR equals infinite and SSIM equals one) if the input image’s MSE is null.
Keywords: Image resizing; Image downscaling; Image upscaling; Lagrange interpolation; Chebyshev nodes (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422000295
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:197:y:2022:i:c:p:105-126
DOI: 10.1016/j.matcom.2022.01.017
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().