EconPapers    
Economics at your fingertips  
 

Collocation approaches to the mathematical model of an Euler–Bernoulli beam vibrations

Seda Çayan, B. Burak Özhan and Mehmet Sezer

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 197, issue C, 32-44

Abstract: Taylor-Matrix and Hermite-Matrix Collocation methods are presented to obtain the modal vibration behavior of an Euler–Bernoulli beam. The methods provide approximate solutions in the truncated Taylor series and the truncated Hermite series by using Chebyshev–Lobatto collocation points and operational matrices. The approaches are applied to the well-known transverse vibration model of a simply-supported Euler–Bernoulli type beam. The beam is assumed under the effect of external harmonic force with spatially varying amplitude. Firstly, the model problem is transformed into a system of linear algebraic equations. Then the approximate solution is computed by solving the obtained algebraic system. The proposed methods are compared with the exact solutions. Mode shapes of the first three fundamental frequencies are obtained for each approach. The convergence behaviors of transverse displacements and absolute errors are calculated for each mode. The numerical results are shown and compared. Based on the given figures and tables, one can state that the methods are remarkable, dependable, and accurate for approaching the mentioned model problems.

Keywords: Taylor-Matrix Collocation method; Hermite-Matrix Collocation method; Euler–Bernoulli beam; Vibrations; External excitation (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422000404
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:197:y:2022:i:c:p:32-44

DOI: 10.1016/j.matcom.2022.01.027

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:197:y:2022:i:c:p:32-44