On the evolution of the COVID-19 epidemiological parameters using only the series of deceased. A study of the Spanish outbreak using Genetic Algorithms
Eduardo Acosta-González,
Julián Andrada-Félix and
Fernando Fernández-Rodríguez
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 197, issue C, 91-104
Abstract:
We propose a methodology for estimating the evolution of the epidemiological parameters of a SIRD model (acronym of Susceptible, Infected, Recovered and Deceased individuals) which allows to evaluate the sanitary measures taken by the government, for the COVID-19 in the Spanish outbreak. In our methodology the only information required for estimating these parameters is the time series of deceased people; due to the number of asymptomatic people produced by the COVID-19, it is not possible to know the actual number of infected people at any given time. Therefore, among the different time series that quantify the pandemic we consider just the number of deceased people to minimize the square sum of errors.
Keywords: COVID-19; SIRD model estimation; Predictive modelling; Genetic Algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847542200060X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:197:y:2022:i:c:p:91-104
DOI: 10.1016/j.matcom.2022.02.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().