A novel version of slime mould algorithm for global optimization and real world engineering problems
Bülent Nafi Örnek,
Salih Berkan Aydemir,
Timur Düzenli and
Bilal Özak
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 198, issue C, 253-288
Abstract:
The slime mould algorithm is a stochastic optimization algorithm based on the oscillation mode of nature’s slime mould, and it has effective convergence. On the other hand, it gets stuck at the local optimum and struggles to find the global optimum. Location updates of slime moulds are very important in terms of convergence to optimum. In this study, the position updates of the sine cosine algorithm are combined with the slime mould algorithm. In these updates, besides the existing sine cosine algorithm, different types of sine cosine algorithmic transformations are used and the oscillation processes of the slime moulds are also modified. In the mathematical model of the slime mould algorithm, the arctanh function that stacks two random slime moulds in a certain interval has been replaced by a novel modified sigmoid function. The proposed function is presented with its theoretical derivations based on Schwarz lemma. According to experimental results, it has been observed that the exploration and exploitation capabilities of the proposed algorithm are highly effective. In the study, sine cosine trigonometric functions have been used while updating the position in slime mould algorithm. The performance of the presented algorithm has been considered for fifty benchmark functions and has also been tested on cantilever beam design, pressure vessel design, 3-bar truss and speed reducer real world problems. Accordingly, it is possible to conclude that the proposed hybrid algorithm has better ability to escape from local optima with faster convergence than standard sine cosine and slime mould algorithms.
Keywords: Slime mould algorithm; Sine cosine algorithm; Modified sigmoid function; Global optimization; Schwarz lemma (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422000830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:198:y:2022:i:c:p:253-288
DOI: 10.1016/j.matcom.2022.02.030
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().