Integration of the stochastic underdamped harmonic oscillator by the θ-method
A. Tocino,
Y. Komori and
T. Mitsui
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 199, issue C, 217-230
Abstract:
In recent papers, a simple harmonic oscillator with additive noise has been studied by several researchers, and it has been shown that its mean total energy increases linearly as time goes to infinity. In contrast to them, we consider an underdamped harmonic oscillator with additive noise. Our analysis reveals that the mean total energy of the stochastic underdamped harmonic oscillator remains bounded and it asymptotically tends to a certain value. In addition, we give a relation between the mean kinetic energy and the growth rate of the mean total energy. Whereas all stochastic θ-methods preserve this relation as they are of weak second local order, we show that only the stochastic trapezoidal method can attain the asymptotic values of the mean total energy and its derivative given by the exact solution. Numerical experiments are carried out to confirm these results.
Keywords: Stochastic differential equations; Stochastic underdamped oscillator; Stochastic theta methods; Second order moment; Numerical methods; Numerical integration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422001112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:199:y:2022:i:c:p:217-230
DOI: 10.1016/j.matcom.2022.03.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().