EconPapers    
Economics at your fingertips  
 

Robust RRE technique for increasing the order of accuracy of SPH numerical solutions

L.P. da Silva, C.H. Marchi, M. Meneguette and A.C. Foltran

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 199, issue C, 231-252

Abstract: This study presents the use of a post-processing technique called repeated Richardson extrapolation (RRE) to improve the accuracy of numerical solutions of local and global variables obtained using the smoothed particle hydrodynamics (SPH) method. The investigation focuses on both the steady and unsteady one-dimensional heat conduction problems with Dirichlet boundary conditions, but this technique is applicable to multidimensional and other mathematical models. By using all the variables of the real type and quadruple precision (extended precision or Real*16) we were able to, for example, reduce the discretization error from 1.67E−08 to 3.46E−33 with four extrapolations, limited only by the round-off error and, consequently, determining benchmark solutions for the variable of interest ψ(1/2) using the SPH method. The increase in CPU time and memory usage owing to post-processing was almost null. RRE has proven to be robust in determining up to a sixteenth order of accuracy in meshless discretization for the spatial domain.

Keywords: SPH with RRE highly accurate scheme; Sixteenth order of accuracy; Heat diffusion; Discretization error; Verification; SPH benchmark solutions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422001185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:199:y:2022:i:c:p:231-252

DOI: 10.1016/j.matcom.2022.03.016

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:199:y:2022:i:c:p:231-252