EconPapers    
Economics at your fingertips  
 

Efficient dependency models: Simulating dependent random variables

Matieyendou Lamboni

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 200, issue C, 199-217

Abstract: Dependency functions of dependent variables are relevant for (i) performing uncertainty quantification and sensitivity analysis in presence of dependent variables and/or correlated variables, and (ii) simulating random dependent variables. In this paper, we mathematically derive practical dependency functions for classical multivariate distributions such as Dirichlet, elliptical distributions and independent uniform (resp. gamma and Gaussian) variables under constraints that are ready to be used. Since such dependency models are used for sampling random values and we have many dependency models for every joint cumulative distribution function, we provide a way for choosing the efficient sampling function using multivariate sensitivity analysis. We illustrate our approach by means of numerical simulations.

Keywords: Dependent generalized sensitivity indices; Dependent variables; Efficient sampling; Multivariate distributions; Random values (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422001604
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:200:y:2022:i:c:p:199-217

DOI: 10.1016/j.matcom.2022.04.018

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:200:y:2022:i:c:p:199-217