EconPapers    
Economics at your fingertips  
 

Design of continuous-time model reference adaptive and super-twisting sliding mode controller

Guilherme Vieira Hollweg, Paulo Jefferson Dias de Oliveira Evald, Deise Maria Cirolini Milbradt, Rodrigo Varella Tambara and Hilton Abílio Gründling

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 201, issue C, 215-238

Abstract: This paper presents a continuous-time Robust Model Reference Adaptive and Super-Twisting Sliding Mode controller and its stability analysis by means of Lyapunov stability theory. The controller law is composed by two control structures: a Robust Model Reference Adaptive Controller (RMRAC) and an Adaptive Super-Twisting Sliding Mode (STSM) Controller. The main benefit of this novel control algorithm is to present, simultaneously, high robustness and fast dynamic response, which are conflicting with each other in conventional adaptive algorithms. Furthermore, as the STSM Controller is also adaptive, the dynamic response has relevant chattering mitigation without additional efforts on controller design, implementation, or execution. Besides, the union of the STSM with RMRAC also improved sliding accuracy in steady state. Thereby, in steady state, the STSM control contribution is almost zero, which avoids the chattering phenomenon, once it acts only in the transient regimes. The stability and robustness analysis of the control structure are presented, in continuous-time, considering the overall plant, that is, in presence of matched and unmatched dynamics. The continuous-time stability analysis is important in an adaptive system, since it features an intermediary step for control system stability analysis in discrete-time and its application in real plants. In addition, to present the feasibility and benefits of the proposed controller, simulations results of two case studies are presented: one is the controller application in an unstable non-minimum phase plant, and the second is its application for current regulation of a single-phase grid-tied power converter with an LCL filter. Moreover, to corroborate the robustness and tracking performance of the proposed controller a comparison with an adaptive first order Sliding Mode is also presented.

Keywords: Adaptive control theory; Lyapunov stability analysis; RMRAC; STSM; Grid-tied power converters; LCL filter (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422002026
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:201:y:2022:i:c:p:215-238

DOI: 10.1016/j.matcom.2022.05.014

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:215-238