Time optimal control for a mobile robot with a communication objective
Jérôme Lohéac,
Vineeth Satheeskumar Varma and
Irinel Constantin Morărescu
Mathematics and Computers in Simulation (MATCOM), 2022, vol. 201, issue C, 96-120
Abstract:
The paper proposes control design strategies that minimize the time required by a mobile robot to accomplish a certain task (reach a target) while transmitting/receiving a message. The message delivery is done over a wireless network, and we account for path-loss while disregarding any shadowing phenomena, i.e., the transmission rate depends only on the distance to the wireless antenna. First, using the Pontryagin maximum principle we design a minimal-time control for the simplified robot dynamics described by a single integrator. Next, we show how we can use these theoretical results to efficiently control more complicated non-holonomic dynamics. Numerical simulations illustrate the effectiveness of the theoretical results.
Keywords: Time optimal control; Wireless communication; Pontryagin maximum principle (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422002014
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:201:y:2022:i:c:p:96-120
DOI: 10.1016/j.matcom.2022.05.013
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().