EconPapers    
Economics at your fingertips  
 

Dynamics and stability of two predators–one prey mathematical model with fading memory in one predator

Zeynep Yılmaz, Selahattin Maden and Aytül Gökçe

Mathematics and Computers in Simulation (MATCOM), 2022, vol. 202, issue C, 526-539

Abstract: This paper concentrates on dynamics and stability analysis of two predators–one prey mathematical model with competition between predators and fading memory in one predator. The investigation of the constructed model shows that there exist five equilibria, e.g. trivial extinction state of all populations, extinction of both predators state, extinction of first or second predator state and coexisting state. Investigating the eigenvalues of characteristic polynomial, conditions for the local stability around each equilibrium are also determined depending on the parameter space. Analytical formulations are complemented with numerical simulations, where time simulations and single parameter numerical continuation of each variable are performed with respect to model parameters and multiple sub-and super-critical Hopf bifurcations, period doubling bifurcation and transcritical bifurcation are detected for different values of memory related parameter. Our results show that fading memory and competition between predators have substantial impact on the existence and dynamics of all three populations and may shed lights on further understanding of interacting species in ecology.

Keywords: Two predators–one prey model; Stability analysis; Recent past; Bifurcation; Dynamical systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003263
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:202:y:2022:i:c:p:526-539

DOI: 10.1016/j.matcom.2022.07.023

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:526-539