On a quantile autoregressive conditional duration model
Helton Saulo,
Narayanaswamy Balakrishnan and
Roberto Vila
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 203, issue C, 425-448
Abstract:
Autoregressive conditional duration (ACD) models are primarily used to deal with data arising from times between two successive events. These models are usually specified in terms of a time-varying conditional mean or median duration. In this work, we relax this assumption and consider a conditional quantile approach to facilitate the modeling of different percentiles. The proposed ACD quantile model is based on a skewed version of Birnbaum–Saunders distribution, which yields better fit of the tails than the traditional Birnbaum–Saunders distribution, in addition to facilitating the implementation of an expectation conditional maximization (ECM) algorithm. A Monte Carlo simulation study is performed to assess the behavior of the model as well as the parameter estimation method and the evaluation of a form of residuals. Two real financial transaction data sets are finally analyzed to illustrate the proposed approach.
Keywords: Skewed Birnbaum–Saunders distribution; Conditional quantile; ECM algorithm; Monte Carlo simulation; Financial transaction data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003044
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:203:y:2023:i:c:p:425-448
DOI: 10.1016/j.matcom.2022.06.032
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().