EconPapers    
Economics at your fingertips  
 

A new splitting method for systems of monotone inclusions in Hilbert spaces

Yunda Dong

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 203, issue C, 518-537

Abstract: In this article, we consider the problem of finding a zero of systems of monotone inclusions in real Hilbert spaces. Furthermore, each monotone inclusion consists of three operators and the third is linearly composed. We suggest a splitting method for solving them: At each iteration, for each monotone inclusion, it mainly needs computations of three resolvents for individual operator. This method can be viewed as a powerful extension of the classical Douglas–Rachford splitting. Under the weakest possible assumptions, by introducing and using the characteristic operator, we analyze its weak convergence. The most striking feature is that it merely requires each scaling factor for individual operator be positive. Numerical results indicate practical usefulness of this method, together with its special cases, in solving our test problems of separable structure.

Keywords: Monotone inclusion; Characteristic operator; Splitting methods; Weak convergence; Scaling factor (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422002932
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:203:y:2023:i:c:p:518-537

DOI: 10.1016/j.matcom.2022.06.023

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:518-537