Spatio temporal dynamics of direct current in treated anisotropic tumors
Antonio Rafael Selva Castañeda,
Josue Mariño del Pozo,
Erick Eduardo Ramirez-Torres,
Eduardo José Roca Oria,
Sorangel Bolaños Vaillant,
Juan I. Montijano and
Luis Enrique Bergues Cabrales
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 203, issue C, 609-632
Abstract:
The inclusion of a diffusion term in the modified Gompertz equation (Cabrales et al., 2018) allows to describe the spatiotemporal growth of direct current treated tumors. The aim of this study is to extend the previous model to the case of anisotropic tumors, simulating the spatiotemporal behavior of direct current treated anisotropic tumors, also carrying out a theoretical analysis of the proposed model. Growths in the mass, volume and density of the solid tumors are shown for each response type after direct current application (disease progression, partial response, stationary partial response and complete remission). For this purpose, the Method of Lines and different diffusion tensors are used. The results show that the growth of the tumor treated with direct current is faster for the shorter duration of the net antitumor effect and the higher diffusion coefficient and anisotropy degree of the solid tumor. It is concluded that the greatest direct current antitumor effectiveness occurs for the highly heterogeneous, anisotropic, aggressive and hypodense malignant solid tumors.
Keywords: Modified Gompertz equation; Anisotropic and heterogeneous malignant solid tumors; Electrochemical therapy; Diffusion tensor (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:203:y:2023:i:c:p:609-632
DOI: 10.1016/j.matcom.2022.07.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().