Modelling and analysis of delayed tumour–immune system with hunting T-cells
Kaushik Dehingia,
Parthasakha Das,
Ranjit Kumar Upadhyay,
Arvind Kumar Misra,
Fathalla A. Rihan and
Kamyar Hosseini
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 203, issue C, 669-684
Abstract:
This study proposes a modified prey–predator-like model consisting of tumour cells, hunting T-cells, and resting T-cells to illustrate tumour–immune interaction by incorporating discrete-time-delay with conversion or growth of hunting cells. For analysis, the proposed system has been transformed into a normalized system, and its non-negativity solution has been verified. The linear stability of the system has been analysed at each equilibrium. The discrete-time delay affects the system’s stability, and the system undergoes a Hopf bifurcation. Moreover, the length of time delay for which a periodic solution can be preserved has been derived. Finally, numerical computations have been presented that correlate with analytical results and are also relevant from a biological perspective.
Keywords: Tumour–immune interaction; Hunting T-cells; Time-delay; Hopf-bifurcation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:203:y:2023:i:c:p:669-684
DOI: 10.1016/j.matcom.2022.07.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().