EconPapers    
Economics at your fingertips  
 

Modeling metastatic tumor evolution, numerical resolution and growth prediction

I.M. Bulai, M.C. De Bonis, C. Laurita and V. Sagaria

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 203, issue C, 721-740

Abstract: In this paper we consider a generalized metastatic tumor growth model that describes the primary tumor growth by means of an Ordinary Differential Equation (ODE) and the evolution of the metastatic density using a transport Partial Differential Equation (PDE). The numerical method is based on the resolution of a linear Volterra integral equation (VIE) of the second kind, which arises from the reformulation of the ODE–PDE model. The convergence of the method is proved and error estimates are given. The computation of the approximate solution leads to solving well conditioned linear systems. Here we focus our attention on two different case studies: lung and breast cancer. We assume five different tumor growth laws for each of them, different metastatic emission rates between primary and secondary tumors, and lastly that the newborn metastases can be formed by clusters of several cells.

Keywords: Metastatic tumor growth; PDEs; Volterra integral equation; Lung tumor; Breast carcinoma (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003032
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:203:y:2023:i:c:p:721-740

DOI: 10.1016/j.matcom.2022.07.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:721-740