Initial value problems in Type-2 fuzzy environment
Dhabaleswar Mohapatra and
S. Chakraverty
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 204, issue C, 230-242
Abstract:
In real-world problems, uncertainty may not be ignored. Because in the actual scenario, the parameters involved may vary depending on a variety of factors. Accordingly, fuzzy numbers rather than crisp parameters may be used to deal with these uncertainties. It may be noted that the use of Type-2 fuzzy numbers (T2FN) over Type-1 fuzzy numbers (T1FN) is advantageous as the value of the membership function varies from observer to observer. There are several practical problems whose governing equations are initial value problems. The main goal of this investigation is to solve ordinary differential equations with type-2 fuzzy uncertain initial conditions in order to deal with such situations. This article presents an analytical method for solving type-2 fuzzy differential equations using Triangular Perfect Quasi Type-2 Fuzzy Numbers (TPQT2FN). A newly defined triple parametric form of the type-2 fuzzy number is used in this case. Finally, the proposed method is demonstrated using a few numerical examples and application problems.
Keywords: Type-2 fuzzy set; Vertical slice; Footprint of Uncertainty; Triple parametric form of Type-2 fuzzy number (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:204:y:2023:i:c:p:230-242
DOI: 10.1016/j.matcom.2022.08.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().