Effects of periodic aerosol emission on the transmission dynamics of Neisseria Meningitis A
Francis Signing,
Berge Tsanou,
Jean Lubuma and
Samuel Bowong
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 204, issue C, 43-70
Abstract:
We develop and analyze a deterministic non-autonomous differential equation model for the meningococcal meningitis, the novelty of which lies in the incorporation of the following important facts: the periodic emission of desert aerosols, the biological sequence involved in the meningitis sero A (NmA) infection, and the burden caused by asymptomatic individuals. Though not containing meningococcus, the desert aerosols serve as a catalyst for meningococcal infection. We assess the impact of seasonality of aerosol production on the transmission dynamics of Neisseria meningitis A. Theoretically, we introduce two explicit threshold parameters, R0˜ and R0̂, that bound the basic reproduction number, R0, from below and above, respectively: R0˜≤R0≤R0̂. We prove that meningitis persists uniformly in the population when R0˜>1 and tends to disappear when R0̂<1. We numerically illustrate these results by considering four well-known functions of the concentration of aerosols, namely the minimum, average, maximum and actual time dependent values of the concentration of aerosols. It is shown that there exists a stable periodic solution (limit cycle) when the basic reproduction exceeds the unity, thereby highlighting the complexity of controlling the disease in the presence of periodic emission of aerosols. Two control strategies are incorporated in the model with the aim to reduce or eradicate the disease. These are to water the roads in the dry season and to raise awareness on the risk factor of the regrouping of the population. Numerical simulations show that the first strategy reduces the rate of disease transmission; but using it alone might not eradicate the disease. On the contrary, the sensitization of people to avoid gatherings can on its own drive the disease to extinction after some time when the maximum sensitization efficiency is above the control efficiency threshold β0c. Under this condition, a combination of the two control strategies leads to same conclusion as the second strategy.
Keywords: Meningococcal meningitis; Aerosol dust; Watering; Awareness; Seasonality; Transmission; Persistence; Global stability (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422002609
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:204:y:2023:i:c:p:43-70
DOI: 10.1016/j.matcom.2022.06.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().