An opposition-based butterfly optimization algorithm with adaptive elite mutation in solving complex high-dimensional optimization problems
Yu Li,
Xiaomei Yu and
Jingsen Liu
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 204, issue C, 498-528
Abstract:
To solve complex high-dimensional optimization problems, an opposition-based butterfly optimization algorithm with adaptive elite mutation (OBOAEM) is proposed. In the initial stage, the opposition-based learning mechanism is introduced to increase the diversity of the initial population and improve the probability of finding the optimal value. In order to balance the process of global search and local search, the segmental adjustment factor is used to improve the optimization accuracy of the algorithm. In the final stage of the algorithm, the elite mutation strategy is adopted to prevent precocity of the algorithm. In this paper, 23 benchmark functions are selected to test OBOAEM and original algorithm BOA in low dimension, and 16 benchmark functions are introduced to test OBOAEM and eight intelligent optimization algorithms in high dimensions 100, 500 and 1000. In addition, the simulation experiments of 30 CEC2014 complex deformation functions reveal the OBOAEM has a good effect in solving complex optimization problems, which are compared with six state-of-art algorithms. Friedman test is used forstatistical analysis, showing that OBOAEM has better optimization performance for complex high-dimensional problems. Finally, OBOAEM is applied to engineering design problems, and it is proved that OBOAEM is competitive in solving real-world problems.
Keywords: Butterfly optimization algorithm; Opposition-based learning mechanism; Elite mutation strategy; Complex high-dimensional problems; CEC2014; Engineering problems (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:204:y:2023:i:c:p:498-528
DOI: 10.1016/j.matcom.2022.08.020
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().