Structure preserving fourth-order difference scheme for the nonlinear spatial fractional Schrödinger equation in two dimensions
Hengfei Ding and
Junhong Tian
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 205, issue C, 1-18
Abstract:
In this paper, we focus on develop high-order and structure-preserving numerical algorithm for the two-dimensional nonlinear space fractional Schrödinger equations. By constructing a new generating function, we obtain a fourth-order numerical differential formula and use it to approximate the spatial Riesz derivative, while the Crank–Nicolson method is applied for the time derivative. Based on the energy method, the conservation, solvability and convergence of the numerical algorithm are proved. Finally, some numerical examples are used to verify the correctness of the theoretical analysis and the validity of the numerical algorithm.
Keywords: Riesz derivative; Structure-preserving numerical algorithm; Nonlinear space fractional Schrödinger equations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003986
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:205:y:2023:i:c:p:1-18
DOI: 10.1016/j.matcom.2022.09.021
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().