EconPapers    
Economics at your fingertips  
 

A unification of least-squares and Green–Gauss gradients under a common projection-based gradient reconstruction framework

Alexandros Syrakos, Oliver Oxtoby, Eugene de Villiers, Stylianos Varchanis, Yannis Dimakopoulos and John Tsamopoulos

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 205, issue C, 108-141

Abstract: We propose a family of gradient reconstruction schemes based on the solution of over-determined systems by orthogonal or oblique projections. In the case of orthogonal projections, we retrieve familiar weighted least-squares gradients, but we also propose new direction-weighted variants. On the other hand, using oblique projections that employ cell face normal vectors we derive variations of consistent Green–Gauss gradients, which we call Taylor–Gauss gradients. The gradients are tested and compared on a variety of grids such as structured, locally refined, randomly perturbed, unstructured, and with high aspect ratio. The tests include quadrilateral and triangular grids, and employ both compact and extended stencils, and observations are made about the best choice of gradient and weighting scheme for each case. On high aspect ratio grids, it is found that most gradients can exhibit a kind of numerical instability that may be so severe as to make the gradient unusable. A theoretical analysis of the instability reveals that it is triggered by roundoff errors in the calculation of the cell centroids, but ultimately is due to truncation errors of the gradient reconstruction scheme, rather than roundoff errors. Based on this analysis, we provide guidelines on the range of weights that can be used safely with least squares methods to avoid this instability.

Keywords: Gradient calculation; Green–Gauss; Least-squares; Finite volume; High aspect ratio grids; Numerical stability (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422003743
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:205:y:2023:i:c:p:108-141

DOI: 10.1016/j.matcom.2022.09.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:108-141