A rational-expansion-based method to compute Gabor coefficients of 2D indicator functions supported on polygonal domain
Ligang Sun,
Roeland J. Dilz and
Martijn C. van Beurden
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 206, issue C, 487-502
Abstract:
We propose a method to compute Gabor coefficients of a two-dimensional (2D) indicator function supported on a polygonal domain by means of rational expansion of the Faddeeva function and by solving second-order linear difference equations. This method has the following three attractive features: (1) the problem of computing Gabor coefficients is formulated as the calculation of a sequence of integrals with a uniform structure, (2) a rational expansion based on fast Fourier transform (FFT) is used to approximate the Faddeeva function on the entire complex plane, (3) second-order inhomogeneous linear difference equations are derived for previous integrals and they are solved stably with Olver’s algorithm. Numerical quadrature to compute Gabor coefficients is avoided. Numerical examples show this rational-expansion-based method significantly outperforms numerical quadrature in terms of computation time while maintaining accuracy.
Keywords: Gabor coefficient; Faddeeva function; Rational expansion; Second-order difference equation; Olver’s algorithm (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422004918
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:206:y:2023:i:c:p:487-502
DOI: 10.1016/j.matcom.2022.12.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().