EconPapers    
Economics at your fingertips  
 

On spectral polar fractional Laplacian

Alireza Ansari and Mohammad Hossein Derakhshan

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 206, issue C, 636-663

Abstract: In this paper, we introduce the fractional Sturm–Liouville operators and present the polar fractional Laplacian as a particular case of these operators. We also consider the distributed order space–time fractional diffusion equation involving the polar fractional Laplacian and propose three approaches for studying this problem on the circle and ring domains. First, we apply the integral transforms as the analytical methods to get the solution in terms of the Laplace-type integrals using the Titchmarsh theorem. Second, we use the finite difference method for discretization of the space variable and employ the matrix transfer technique to obtain a system of the distributed order fractional equations. For this system, we modify the Putzer’s algorithm and get the solution in terms of the eigenvalues of discretization matrix. Third, we employ the backward Euler numerical method for discretization of the time variable and find the corresponding error bound. Moreover, we compare and verify the approximate solutions with the exact solutions in analytical form.

Keywords: Fractional derivative; Matrix transfer technique; Bessel functions; Sturm–Liouville theory; Integral transform; Backward Euler method; Polar fractional Laplacian; Putzer’s algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422004955
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:206:y:2023:i:c:p:636-663

DOI: 10.1016/j.matcom.2022.12.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:636-663