On spectral polar fractional Laplacian
Alireza Ansari and
Mohammad Hossein Derakhshan
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 206, issue C, 636-663
Abstract:
In this paper, we introduce the fractional Sturm–Liouville operators and present the polar fractional Laplacian as a particular case of these operators. We also consider the distributed order space–time fractional diffusion equation involving the polar fractional Laplacian and propose three approaches for studying this problem on the circle and ring domains. First, we apply the integral transforms as the analytical methods to get the solution in terms of the Laplace-type integrals using the Titchmarsh theorem. Second, we use the finite difference method for discretization of the space variable and employ the matrix transfer technique to obtain a system of the distributed order fractional equations. For this system, we modify the Putzer’s algorithm and get the solution in terms of the eigenvalues of discretization matrix. Third, we employ the backward Euler numerical method for discretization of the time variable and find the corresponding error bound. Moreover, we compare and verify the approximate solutions with the exact solutions in analytical form.
Keywords: Fractional derivative; Matrix transfer technique; Bessel functions; Sturm–Liouville theory; Integral transform; Backward Euler method; Polar fractional Laplacian; Putzer’s algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422004955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:206:y:2023:i:c:p:636-663
DOI: 10.1016/j.matcom.2022.12.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().