Numerical analysis of the Linearly implicit Euler method with truncated Wiener process for the stochastic SIR model
Xiaochen Yang,
Zhanwen Yang and
Chiping Zhang
Mathematics and Computers in Simulation (MATCOM), 2023, vol. 208, issue C, 1-14
Abstract:
The paper deals with the numerical positivity, convergence and dynamical behaviors (including extinction and persistence) for stochastic SIR model. For the real significance of the numerical analysis on stochastic SIR model, a linearly implicit Euler method with truncated Wiener process is introduced. The numerical positivity is obtained by the truncated Wiener process, which is the basis for the investigation of convergence and dynamical behavior. The numerical dynamical behavior is obtained by an exponential presentation for the nonlinear stochastic stability function and the large number theorem for martingale, which reproduces the existing theoretical results of exact solution. Finally, numerical examples are given to validate our numerical results for stochastic SIR model.
Keywords: Stochastic SIR model; Linearly implicit Euler method; Extinction; Persistence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475423000101
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:208:y:2023:i:c:p:1-14
DOI: 10.1016/j.matcom.2023.01.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().