EconPapers    
Economics at your fingertips  
 

Study of fractional-order reaction-advection-diffusion equation using neural network method

Chetna Biswas, Anup Singh, Manish Chopra and Subir Das

Mathematics and Computers in Simulation (MATCOM), 2023, vol. 208, issue C, 15-27

Abstract: In the present article the spatio-temporal fractional-order nonlinear reaction-advection-diffusion equation is solved using the neural network method (NNM). Shifted Legendre orthogonal polynomials with variable coefficients are used in the network’s construction. The characteristics of a fractional-order derivative are used to determine the loss function of a neural network. The permissible learning rate range is discussed in detail, assuming that the Lipschitz hypothesis is accurate for the nonlinearity in reaction term. We have demonstrated the application of the NNM on two numerical examples by utilizing the neural networks which had been repeatedly trained on the training set. In other words, we have validated the effectiveness of the method for such problems. The effects of reaction term and also the degree of nonlinearity in reaction and advection terms on the solution profile are visualized through graphical presentations for specific test cases.

Keywords: Fractional-order reaction-advection-diffusion equation; Neural network method; Artificial neural network loss function; Damping (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475422005183
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:208:y:2023:i:c:p:15-27

DOI: 10.1016/j.matcom.2022.12.032

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:15-27